Distributed Custodial Frameworks for Archival Preservation

Amy Rudersdorf
Director, Digital Information Management Program
State Library of North Carolina
Two Questions:

- Why don’t *real* preservation solutions exist after all the time & resources that have been spent by a lot of really smart people and powerful institutions?

- Why don’t some (any?) of us have established, trusted digital preservation programs (mature policies, institutional support, and stable repositories)?
Answers (sort of)

- Because the challenges are huge and the resources are small
 - Most institutions will never have the resources needed to build and manage in-house digital preservation programs
 - The objects we are trying to preserve are constantly changing and increasing in complexity
 - Every repository cannot hire experts in preservation technologies
 - The solutions we develop today will not work forever
Solution [?]

- A trusted, sustainable preservation service that repositories of all types and sizes could employ to support their digital preservation activities and responsibilities.

- Ideally, it would:
 - be distributed
 - be custodial
 - include preservation actions that answer the needs of both libraries and archives
Introducing . . .

- **Distributed Custodial Archival Preservation Environments (DCAPE)**
 - *Main Goal:* to build a distributed production preservation environment that meets the needs of digital repositories for trusted archival preservation services.
 - Grant funded by NHPRC in 2008 (RE10010-08)
 - Started in December 2008, will run for 2 ½ years
 - Over 30 individuals at 10 institutions, including 4 staff at UNC
 - http://dcape.org
DCAPE Partners

- Cultural Entity: Getty Research Institute
- Cyberinfrastructure: West Virginia University, Carleton University (Canada)
- State Archives: California, Kansas, Michigan, Kentucky, North Carolina, New York
- State Library: North Carolina
- University Archives: Tufts
- UNC: Renaissance Computing Institute (RENCI) and School of Information and Library Science (SILS)
The Center for **Data Intensive Cyber Environments** at the University of North Carolina at Chapel Hill

- Develops and manages iRODS
- “Advanced open source technologies for complete life cycle managing, sharing, and preserving of digital data”
Let’s break down the main goal:

- **Distributed**: Physical custody of collections is hosted outside of the originating repository by a trusted preservation service.
- **Custodial**: Originating repository retains legal custody.
- **Archival Preservation**:
 - Originating repository remains responsible for archival functions, including preservation and access activities.
 - Access to collections is controlled by the originating repository.
 - Trusted preservation service provides originating repository with a complete audit trail for all items in hosted collections.
Let’s break down the main goal:

- “Trusted” = TRAC & OAIS compliant
- Services are based on policies ("rules") defined by the user
 - A series of rules might “look” like this:

 "When my files are ingested, replicate them in three different locations and run a checksum on each file. Bit-check files every month until I say otherwise. Alert me to any changes."
Other project goals #1/3

- The software infrastructure will automate many of the administrative tasks associated with the management of digital repositories.
 - Examples of automated tasks:
 - Authentication, replication, migration, obsolete file management, preservation metadata management
Other project goals #2/3

- The preservation service will reduce the need for repositories to build their own digital preservation systems in-house.
- This is especially appealing to small institutions or institutions with little IT or administrative support.
A business model will be developed to sustain the preservation service over time.

At some point, down the road this will be established, so... *something* may cost *something*. . .but none of that has been defined yet.
iRODS introduction

- “i Rule Oriented Data Systems”
- Preservation environment that provides rules-based automation of archival and preservation functions (basically, repeatable policy-based services)
- Standard and optional services will be available
iRODS introduction

Associate the rule-based (policies-driven) data management system to combine:

- Data Objects
- Collections
- User Groups
- Storage Systems

For Example: A particular group might ingest a particular collection, and another group might access a subset of that collection from another location.
"Layers" in iRODS: From Users to Storage

- **Community**
 Decides how to manage shared Collection(s)

- **Policies**
 Express goals for data access, sharing, preservation, etc.

- **Administrator/User**
 Applies Rules

- **Rules**
 Implement Policies in computer-actionable form

- **iRODS Server**
 Executes Micro-services

- **Micro-services**
 Operate on remote data
iRODS intro: Policies in Action!

- Originating Institution specifies policies
 - e.g., “Make X Copies of Accessioned Records”

- Break Policies Down into Rules
 - e.g., “Put one copy at Rocket Center” [and] “Put one copy at UCSD” [and] “Verify Copies are Identical”

- Break Rules Down into Micro-Services
 - e.g., “Put one copy at Rocket Center.”
 - Read File --> Copy File --> Create Checksum --> Copy Checksum --> etc.

- Micro-Services Can Be Combined into Complex Workflows
 - Execute: periodically, on-demand, delayed start, anywhere on the network
iRODS introduction

- Shared service should reduce costs for individual repositories compared to the cost of building and maintaining in-house preservation capabilities
- Provides hooks to existing CMSs, DAMs, and repositories
- Acts as “middleware” or as a back-end system
- https://www.irods.org
DCAPE & iRODS: What a team!
DCAPE Tasks (Underway)

- Execute service agreements between UNC and existing partners to govern use of test collections.
- Define and implement rules (defined by partners) and services (based on OAIS framework) for iRODS to perform on test collections.
- Ingest test collections into iRODS and validate rules and services.
- Develop business model (including costs) for sustaining a repository service based on iRODS.
- Develop model service agreements that define standard and optional services of the repository.
DCAPE Tasks (Future)

- DCAPE/DICE team involved in SHAMAN project grant
 - Enable systems to render back files without interacting with the original environment.
 - Driver driven
 - Basically, emulation without the hard and software.
 - Will be added to iRODS (and thus DCAPE) when it is “stable.”
DCAPE is “More”

- More than a storage service or environment . . .
- More than a reference tool . . .
- DCAPE will provide the capability for all sorts of digital repositories to fulfill their responsibility to preserve . . .
The Obligatory “Questions?” Slide

It's QUESTION TIME!!